破解软件

破解软件,破解密码,破解工具,破解论坛,破解技术

破解不了的密码是什么(破解密码吗)

本文目录一览:

在世界上,究竟有没有无法破解的密码呢?

密码这个词和我们的现代生活息息相关,尤其是金融和个人信息较多的重要产品,都会涉及到密码的设置和修改等事项。这些密码对我们的数字数据保护有很大帮助,并且已经可以实现网联网操作。

人类对密码学的依赖,早在第五世纪就已经开始,只是,该时期的加密信息是被刻在皮革或者纸上,然后通过信使去传递。以后,随着量子计算机的出现,密码学领域可能会迎来再次飞越。密码学家们正在研究截至目前最为安全的密码,这个伟大进展需要利用物理学的力量。

是否存在一种牢不可破的密码

量子物理学是以极小的尺度来描述物质的某些奇怪行为,密码学家们为了找寻一种真正可以做到牢不可破的密码,已经开始研究量子物理学。早在20世纪70年代和80年代,有一种叫做“量子密钥分发”的方法,密钥可以以字节为单位进行编码,物理学家们便是通过它来加密秘密消息。

同理,物理学家们现在也通过对粒子属性中的键进行编码(一般是光子),想要窃听的人则必须测量粒子,才能窃取钥匙。但只要有这样的企图,都会导致光子的行为发生异常,然后就会导致其发起警告。密码学家们通过这样的内置报警系统发现,密钥分发其实是安全的。

量子键的交换和“量子纠缠”技术

量子键可以通过光纤长距离交换,但“ 量子纠缠 ” 技术更允许两个光子在很远的距离上进行通信。纠缠量子物体拥有这种神奇的属性:如果你将它们分开,哪怕超过数百英里,它们也会彼此感受到。如果窃听者试图拦截钥匙,则粒子会反应、并且测量值会随之发生变化。 纠缠粒子表现为一个单元,允许Alice和Bob通过对每一端进行测量来制作共享密钥。

量子物理学中纠缠的粒子,即使在远距离分离的情况下,也会保持连接。当研究人员对其中一个粒子执行动作,同时也会影响另一个的状态。在量子物理学的规则中,未观察到的光子同时存在于所有可能的状态中,但实际观察或测量时,却只表现出一种状态。当一对粒子(如光子)在物理上相互作用时会发生纠缠,光子可以分开很远,数百英里、甚至更长。

特殊装置如何跟踪Enigma环境

西蒙辛格是The Code Book的作者,他表示,阿拉伯学者成为世界上最重要的密码分析师,迫使密码学家改编他们的方法。直到阿拉伯数学家al-Kindi意识到它的弱点,取代密码在公元的第一个千年才得以解决,al-Kindi能够通过分析在密文中最常出现的字母,然后实现它们的反转替换。

密码分析师们逐步挑战它们,共同促进了密码学方法的进步。Enigma机器复杂密钥每天更改,其使用了替换算法加密消息的方式,; 密码分析师艾伦·图灵(Alan Turing)开发了一种特殊装置来跟踪Enigma的变化环境。即:秘密消息的发送者,必须提出一种操纵消息上下文的系统方法,并且,只有接收者才能解密。这种混乱的消息,被称为密文。

“密码学”源自希腊语“kryptos”,意思是隐藏。密码学允许双方,在他们的对手无法阅读的语言中进行通信。发件人必须使用一些称为算法的系统方法,以操纵内容加密消息。每个字母都可能被另一个字母替换,或者,对原始消息进行加扰、以达到无法理解顺序排列的目的。

至今仍未被破译的五个世界级密码是什么

尽管数学、语言学和计算机科学已经相当强大了,但历史上仍然有来历千奇百怪的密码难题至今仍未破解。这里我们精选了五个悬而未解的密码难题,如果你有幸破译了其中的任何一个,你都能在密码学界享有至高的荣誉。

十二宫杀手密码

1969 年 7 月 31 日,三家报社各自收到了一封密文的三分之一,密文的作者就是大名鼎鼎的十二宫杀手。十二宫杀手要求这三家报社把密文发表在报纸上,否则他将在当周周末再次杀人。三家报社只好照做。

这个密文共有 408 个符号,以后大家都习惯称它为 408 密文(408-cipher)。408 密文是十二宫杀手的第一封密信。一个星期后,一位教师和他的妻子破解了这篇密文。大卫·芬奇的电影《十二宫杀手》完整地记述了这一事件。

408 密文用的是最简单的字母替换法,所不同的是一个字母可能对应多个符号。这种加密方法可以很好地防止字频破解法,因为你可以让常用的字母对应更多的符号,保证每个符号出现的次数大致相等。不过,破解这样的密码也不是完全没有突破口,“字母 Q 后面一定是 U”等英文特点能提供不少线索。这种一对多的替换加密方法就叫做同音替换法(Homophonic Substitution Cipher)。

同年 11 月 8 日,十二宫杀手又寄出了一篇密文。这篇密文有 340 个字符,被称作 340 密文。与 408 密文不同的是,虽然大家都相信 340 密文同样使用的是同音替换加密,但直到现在 340 密文也没有解开。

CIA 的雕塑密码

1990 年,美国艺术家吉姆·桑伯恩(Jim Sanborn)花费 25 万美元,创作了一个刻满密码的雕塑作品——Kryptos。这个雕塑作品现在坐落于弗吉尼亚 CIA 的广场内。丹·布朗的悬疑小说《失落的符号》里提到了这个雕塑密码,无疑让这个密码再度名声大噪。

位于 CIA 的雕塑密码。

整个密码分为四个部分。前三个部分已被破译,其中第一、二部分是多表替换密码(polyalphabetic substitution),第三部分是置换密码(transposition cipher)。尽管 2010 年 11 月桑伯恩本人给出了一点提示,但目前第四部分仍然没有被解决。

第四部分的密文全文如下:

NGHIJLMNQUVWXZKRYPTOSABCDEFGHIJLOHIJLMNQUVWXZKRYPTOSABCDEFGHIJLPIJLMNQUVWXZKRYPTOSABCDEFGHIJLMQJLMNQUVWXZKRYPTOSABCDEFGHIJLMNRLMNQUVWXZKRYPTOSABCDEFGHIJLMNQSMNQUVWXZKRYPTOSABCDEFGHIJLMNQUTNQUVWXZKRYPTOSABCDEFGHIJLMNQUVUQUVWXZKRYPTOSABCDEFGHIJLMNQUVWVUVWXZKRYPTOSABCDEFGHIJLMNQUVWXWVWXZKRYPTOSABCDEFGHIJLMNQUVWXZXWXZKRYPTOSABCDEFGHIJLMNQUVWXZKYXZKRYPTOSABCDEFGHIJLMNQUVWXZKRZZKRYPTOSABCDEFGHIJLMNQUVWXZKRY ABCDEFGHIJKLMNOPQRSTUVWXYZABCD

D'Agapeyeff 密码

1939 年,地图学专家 Alexander D'Agapeyeff 出版了一本名为 Codes and Ciphers 的密码学普及读物。在文章末尾的“难题挑战”部分,D'Agapeyeff 自己编写了一段很难的密码,目前还没有人破解出来。不过,后来 D'Agapeyeff 本人居然把加密过程给忘了,于是这段密码就变成了一个永久的谜。

密码全文如下:

75628 28591 62916 48164 91748 58464 74748 28483 81638 1817474826 26475 83828 49175 74658 37575 75936 36565 81638 1758575756 46282 92857 46382 75748 38165 81848 56485 64858 5638272628 36281 81728 16463 75828 16483 63828 58163 63630 4748191918 46385 84656 48565 62946 26285 91859 17491 72756 4657571658 36264 74818 28462 82649 18193 65626 48484 91838 5749181657 27483 83858 28364 62726 26562 83759 27263 82827 2728382858 47582 81837 28462 82837 58164 75748 58162 92000

比尔密码

梦想自己能得到一张藏宝地图,上演一段破译密码探寻宝藏的传奇故事?你的机会来了。据说,在 1820 年,一个叫做托马斯·杰斐逊·比尔(Thomas Jefferson Beale)的人在弗吉尼亚贝德福县的某个地方埋藏了大量的宝藏,随后把装有三封密信的盒子交给了一个名叫罗伯特·莫里斯(Robert Morriss)的旅店老板代为保管,之后就永久地消失了。莫里斯死前把盒子里的三份密文交给了他的朋友。这位朋友把这段故事连同密码全文一道印成了小册子,宝藏之谜就这样流传了下来。

1885 年出现的一本小册子。上述所有故事都出自这本小册子里,其真实性不得而知。

利用《独立宣言》作为密钥,可以破解出第二份密码。第二份密码中详细记录了所藏宝藏的数量,现在看来至少值 6500 万美金。这份密文中还说到,宝藏的埋藏地点详细地记在了第一份密码内,而第三份密码里则记录着宝藏的原主人。虽然各方神圣都把五花八门的手段试了个遍,但到目前为止,剩下的两份密码都还没被破解。不过,也有一些人对整个故事进行了理性的分析,认为比尔密码不过是一场骗局。

比尔密码第一部分的全文:

71,194,38,1701,89,76,11,83,1629,48,94,63,132,16,111,95,84,341975,14,40,64,27,81,139,213,63,90,1120,8,15,3,126,2018,40,74758,485,604,230,436,664,582,150,251,284,308,231,124,211,486,225401,370,11,101,305,139,189,17,33,88,208,193,145,1,94,73,416918,263,28,500,538,356,117,136,219,27,176,130,10,460,25,485,18436,65,84,200,283,118,320,138,36,416,280,15,71,224,961,44,16,40139,88,61,304,12,21,24,283,134,92,63,246,486,682,7,219,184,360,78018,64,463,474,131,160,79,73,440,95,18,64,581,34,69,128,367,460,1781,12,103,820,62,110,97,103,862,70,60,1317,471,540,208,121,890346,36,150,59,568,614,13,120,63,219,812,2160,1780,99,35,18,21,136872,15,28,170,88,4,30,44,112,18,147,436,195,320,37,122,113,6,1408,120,305,42,58,461,44,106,301,13,408,680,93,86,116,530,82,568,9102,38,416,89,71,216,728,965,818,2,38,121,195,14,326,148,234,1855,131,234,361,824,5,81,623,48,961,19,26,33,10,1101,365,92,88,181275,346,201,206,86,36,219,324,829,840,64,326,19,48,122,85,216,284919,861,326,985,233,64,68,232,431,960,50,29,81,216,321,603,14,61281,360,36,51,62,194,78,60,200,314,676,112,4,28,18,61,136,247,819921,1060,464,895,10,6,66,119,38,41,49,602,423,962,302,294,875,7814,23,111,109,62,31,501,823,216,280,34,24,150,1000,162,286,19,2117,340,19,242,31,86,234,140,607,115,33,191,67,104,86,52,88,16,80121,67,95,122,216,548,96,11,201,77,364,218,65,667,890,236,154,21110,98,34,119,56,216,119,71,218,1164,1496,1817,51,39,210,36,3,19540,232,22,141,617,84,290,80,46,207,411,150,29,38,46,172,85,19439,261,543,897,624,18,212,416,127,931,19,4,63,96,12,101,418,16,140230,460,538,19,27,88,612,1431,90,716,275,74,83,11,426,89,72,841300,1706,814,221,132,40,102,34,868,975,1101,84,16,79,23,16,81,122324,403,912,227,936,447,55,86,34,43,212,107,96,314,264,1065,323428,601,203,124,95,216,814,2906,654,820,2,301,112,176,213,71,87,96202,35,10,2,41,17,84,221,736,820,214,11,60,760

Dorabella 密码

1897 年,英国作曲家爱德华·艾尔加(Edward Elgar)给挚友多拉小姐(Miss Dora Penny)留下了一封信。这封信上写着 87 个歪歪扭扭的符号,里面明显藏着艾尔加想对多拉小姐说的话。多拉本人一直没能读懂这封信。1937 年,多拉出版了自己的回忆录,将这份密码公之于众。这个密码直到现在仍未被破解。

世界上最难破解的密码数字是什么

密码主要用于军事,无论古今中外,概莫能外。据《六韬》所载,3000年前由姜子牙发明了“阴符”,这就是最初的密码。后被广泛运用于我国古代维护国家安全的军事活动和情报活动中。

相传姜太公带领的周军指挥大营被叛兵包围,情况危急。姜太公令信使突围,他怕信使遗忘机密,又怕周文王不认识信使,耽误军务大事。于是就将自己珍爱的鱼竿折成数节,每节长短不一,各代表一件军机,令信使牢记,不得外传。

信使回到朝中,文王令左右将几节鱼竿合在一起,亲自检验。他辨认出是姜太公的心爱之物,便亲率大军解了姜太公之危。事后,姜太公妙思如泉涌,他将鱼竿传信的办法加以改进,便发明了“阴符”。后来又演化成皇帝和大将各执一半的“虎符”,作为调兵遣将的凭证。

宋朝时,官方便将常用的40个军事短语,分别用40个字来代替,然后编出一首40个字的诗,作为破译的“密码本”。到了明朝,戚继光发明了反切码,他还专门编了两首诗歌,作为“密码本”。这两首诗歌是反切码全部秘密所在,它使用汉字注音方法中的“反切法”,取声母和韵母按照顺序进行编号,再进行读取。其原理与现代密电码的设计原理完全一样,但却比现代密码更难破译。

那么西方的情况又是如何呢?

在古希腊,人们用一条带子缠绕在一根木棍上,沿木棍纵轴方向写好明文,解下来的带子上就只有杂乱无章的密文字母。解密者只需找到相同直径的木棍,再把带子缠上去,沿木棍纵轴方向即可读出有意义的明文。

公元前1世纪,凯撒密码被用于高卢战争中,这是一种简单易行的单字母替代密码。战前凯撒设计了一种对重要的军事信息进行加密的方法,即使这些信息被截获,敌方也不一定能看懂。其实,凯撒密码字母移位的位数就是一种简单易行的单字母替代密码。密码轮是利用凯撒密码来应用的,通过把字母移动一定的位数来实现加密和解密。

计算机因解码而诞生

工业革命后,密码学也进入了机器时代、电子时代。上世纪20年代,人们发明了各种机械设备来自动进行加解密,于是就出现了密码机。因为大多数密码机使用连线接通各个机械转轮,实现密码代换,所以也称之为“转轮机时代”。

世界上最著名的密码机是德国在第一次世界大战时发明的“谜”。

“谜”是世界上第一部机械密码机,其工作原理奠定了当今计算机加密的基础。这种密码融数学、物理、语言、历史、国际象棋原理、纵横填字游戏等为一体,被希特勒称为“神都没办法破译的世界第一密码”。一份德国报告称:“谜”能产生220亿种不同的密钥组合,假如一个人日夜不停地工作,每分钟测试一种密钥的话,需要约4.2万年才能将所有的密钥可能组合试完。

二战期间,“谜”被德军大量用于铁路、企业当中,令德军保密通讯技术处于领先地位。

盟军在破译“谜”密码过程中,吸纳了大批语言学家、人文学家、数学家、科学家加入解码队伍。电脑之父图灵, 1912~1954)也在其列。在图灵的领导下,这支优秀的队伍设计了人类的第一部电脑来协助破解工作。1939年8月,解码队伍完成了一部针对“谜”型机的密码破译机,每秒钟可处理2000个字符,绰号叫“炸弹”。半年后,它几乎可以破译所有被截获的德国情报,这使得德国的许多重大军事行动对盟军都不成为秘密。

虽然计算机因破译密码而诞生,而计算机的发展速度远远超过人类的想象。上世纪70年代,三位科学家和电脑专家设计了一个世界上最难破解的密码锁,意图利用长长的数学密码,保护储存在电脑数据库里的绝密资料,例如可口可乐配方、核武器方程式等。他们宣称,人类要想解开他们的密码,需要4万亿年。

当然,编制密码锁的三位专家没有想到,科学会发展得这样快。仅仅过了17年,世界五大洲600位专家利用1600部电脑,并且借助电脑网络,埋头苦干8个月,终于攻克了这个号称千亿年难破的超级密码锁。结果发现,藏在密码锁下的,并非可口可乐配方、核武器方程式,而是这样一句话:“魔咒是神经质的秃鹰。”

密码的民用不到30年

你恐怕没有想到,这样一个密码算法竟让发明者接受了长达5年的审判。因为,那时的密码还由军方垄断。1991年,美国学者齐默尔曼设计出一种经济而有效的产品。当时,美国法律规定,密码算法属于军火,但齐默尔曼还是铤而走险免费发放了这些加密软件。齐默尔曼被美国海关当局起诉的罪名是:“非法出口军火,给敌对国家和恐怖分子提供进攻美国的工具。”

当时,执政者认为,密码算法的广泛应用给恐怖分子、贩毒集团以可乘之机。而支持加密公众化的公民和密码学家认为,人们亟须使用密码来保护个人隐私。

随着电子商务的发展,大的商业公司也加入进来,他们需要强大的密码算法使他们能在网络时代保证业务的安全。经过5年的斗争,克林顿政府被迫更改了法律,大陪审团也放弃了对齐默尔曼定罪的想法。

随着网络时代的到来,密码成了现代都市生活中最普遍运用的个人信息认证手段,它以最简单的数字组合方式,取代各种烦琐的个人认证方法。

1993年,银行业务实行电脑联网。其中,与个人关系最紧密的是活期存款,银行从那时开始让储户设置个人密码。为了方便记忆,身份证的后几位数、生日、电话号码、门牌号等,是那时候老百姓最常用的密码。1996年,全国银行系统普及了密码的使用和设备更新。1999年开始,银行存取款必须使用密码就变成了硬性规定。现在,多数银行只要输入密码,凭存折或储蓄卡,就能进行5万元以下的支取,无需身份证。

2000年前后,国内各大网站开始大规模开发电子邮箱,那时候网站对邮箱密码的要求并不太严格,规定只要三个字符以上即可,有许多人就用ABC、123等做密码。在收到了用户邮箱被盗的反馈后,网站将密码最少数位提升至6位。现在这些以数字和字母搭配的“软密码”也越来越不安全了。例如,前不久国内就有某大型网站被黑客侵入,泄露客户的大量隐私。

目前大多银行等涉及高隐私的部门都开发出针对自己安全系统的“硬密码”,即非要在客户端插上一个类似于U盘那样的“密码”,然后再输入相应的软密码才能登录相应的网站。

经过数千年的演化,我们又回到了“虎符”的年代,只不过现在的虎符是电子的了。

世上最难破的密码是什么?

作者:山野

老话说,“保密就是保战斗力”。在战争中,密码一旦被敌人破译,意味着一切行动暴露在敌人的监控之下,很难有胜算可言。

因此,各国的专家们都想方设法编制对手无法破译的密码,同时又想尽办法破译对方的密码。一旦破译成功,就会千方百计保住这一成果,以便长期获取情报。

就像二战期间,英国破译了被德国人认为是无法破译的“恩尼格码”密码,从而掌握了战争主动权。为了保住这一秘密,丘吉尔甚至付出了牺牲历史文化名城考文垂的代价,足见密码的重要性。

密码的编制有一定规律,被人破译并不奇怪,所以各国每当怀疑自己的密码遭破译时,便会立即更换。第二次世界大战时,日军总能用各种方法破译美军的电码,让美军吃尽了苦头。

为改变这种局面,美军运用了一种印第安纳瓦霍土语,其语音和语法非常复杂,除了当地土著人外,没人能听懂,并且他们还在土语基础上再编成密码,更加增加了破译的难度。因此直到二战结束,密码也未被敌人破译。

图注:神秘的印第安纳瓦霍密码通讯员。

用这种印第安纳瓦霍语编制密码,是一名叫菲利普约翰斯顿的白人工程师的主意。他的父亲是一名传教士,曾到过纳瓦霍部落,能说一口流利的纳瓦霍土语。约翰斯顿受父亲影响,对纳瓦霍语也很熟悉。在约翰斯顿的参与下,成功编制了纳瓦霍语密码。

美军招募和培训了一批纳瓦霍青年做密码通讯员。通过培训,他们能迅速将英语电文转换成纳瓦霍语,然后发送出去。对方接收到密码,译成纳瓦霍语后再转译成英语。这种密码传送方便,传递迅速而且安全,别人根本无法听懂,这些通讯员被称为“风语者”。

图注:战斗中的密码通讯员。

由于纳瓦霍语没有描述现代军事设备的词语,他们就用比喻或拟声词来代替,如轰炸机用“鸡鹰”代表,战斗机用“蜂鸟”代表,潜水艇用“铁鱼”代表,战舰用“鲸”代表,等等。

美国的这一土语密码在许多重大战役中发挥了重要作用,在诺曼底登陆和硫磺岛战中都立有奇功。硫磺岛战役指挥官之一的霍华德康纳少校说:“没有纳瓦霍人,海军陆战队就不可能夺取硫磺岛。”当时,日本和德国的密码专家用各种方法试图破这一密码,都没成功。这些重要的密码通讯员成为美军的重点保护对象和日军的重要争夺对象。

据统计,二战期间共有2.5万印第安人在战场浴血奋战,其中很多是“风语者”。战争结束后,这些为战争胜利作出重要贡献的纳瓦霍密码通讯员没有受到表彰,他们退役时还被迫宣誓永远保守秘密。美军认为,大战结束后,美国与苏联的战争不可避免,那时这种密码还将继续使用,所以必须严守秘密。

图注:坐落在亚利桑那州的“风语战士”纪念雕塑。

到了1968年,纳瓦霍密码通讯员对战争的贡献才开始被官方公开承认,后来还以此为蓝本拍了电影《风语者》。而坐落在美国亚利桑那州阿帕奇县的窗石城,有一座风语战士纪念雕塑,雕塑为一名跪姿使用无线电的风语战士。亚利桑那州还把8月14日设为“纳瓦霍密码员日”,以此纪念在二战中使用印第安纳瓦霍部落语言编写密码、协助盟军走向胜利的纳瓦霍军人。

2001年7月26日,布什在国会山举行隆重仪式,为这些沉默了半个多世纪的印第安纳瓦霍密码通讯员颁发了国会金质奖章。

图注:当年的印第安老兵参加太平洋战场和欧洲战场的纪念活动。

  • 评论列表:
  •  馥妴邶谌
     发布于 2022-07-14 05:55:37  回复该评论
  • 被解决。第四部分的密文全文如下:NGHIJLMNQUVWXZKRYPTOSABCDEFGHIJLOHIJLMNQUVWXZKRYPTOSABCDEFGHIJLPIJLMNQUVWXZKRYPTOSA

发表评论:

Powered By

Copyright Your WebSite.Some Rights Reserved.