破解软件

破解软件,破解密码,破解工具,破解论坛,破解技术

黎曼定理破解了吗(黎曼定理被证明了吗)

本文目录一览:

黎曼猜想被解决了么

還沒有,而且它的存在意義正在被越來越多的研究人員重視。 这是1859年由德国大数学家黎曼提出的几个猜想之一,而其他猜想均已证明。这个猜想是指黎曼 函数: 的非平凡零点都在 的直线上。 在数学中我们碰到过许多函数,最常见的是多项式和三角函数。多项式 的零点也就是代数方程 =0的根。根据代数基本定理,n次代数方程有n个根,它们可以是实根也可以是复根。因此,多项式函数有两种表示方法,即 当s为大于1的实数时, 为收敛的无穷级数,欧拉仿照多项式情形把它表示为乘积的情形,这时是无穷乘积,而且也不是零点的形式: 但是,这样的 用处不大,黎曼把它开拓到整个复数平面,成为复变量s就包含非常多的信息。正如多项式的情形一样,函数的信息大部分包含在其零点的信息当中,因此, 的零点就成为大家关心的头等大事。 有两类零点,一类是s=-2,-4,…-2n,…时的实零点,称为平凡零点;一类是复零点。黎曼猜想就是讲,这些复零点的实部都是,也就是所有复零点都在 这条直线(后称为临界线)上。 这个看起来简单的问题并不容易。从历史上看,求多项式的的零点特别是求代数方程的复根都不是简单的问题。一个特殊函数的零点也不太容易找到。在85年前,哈代首先证明这条临界线上有无穷多个零点。10年前我们知道有2/5的复零点都在这条线上,而且这条线外至今也没有发现复零点,因此,黎曼猜想是对是错还在未定之中。 这个简单的特殊函数在数学上有重大意义,正因为如此,黎曼猜想总是被当成数一数二的重要猜想。在这个猜想上稍有突破,就有不少重大成果。200年前高斯提出的素数定理就是在100年前由于黎曼猜想的一个重大突破而证明的。当时只是证明复零点都在临界线附近,如果黎曼猜想被完全证明,整个解析数论将取得全面进展。 更重要的是,在代数数论、代数几何、微分几何、动力系统理论等学科中都引入各种 函数和它们的推广L函数,它们各有相应的“黎曼猜想”,其中有的黎曼猜想已经得到证明,使得该分支获得突破性的进展。可以设想,黎曼猜想及其各种推广是21世纪的中心的问题之一。

记得采纳啊

黎曼猜想进展如何,有没有完全解决啊

有些数具有不能表示为两个更小的数的乘积的特殊性质,例如,2,3,5,7,等等。这样的数称为素数;它们在纯数学及其应用中都起着重要作用。在所有自然数中,这种素数的分布并不遵循任何有规则的模式;然而,德国数学家黎曼(1826~1866)观察到,素数的频率紧密相关于一个精心构造的所谓黎曼蔡塔函数z(s)的性态。著名的黎曼假设断言,方程z(s)=0的所有有意义的解都在一条直线上。这点已经对于开始的1,500,000,000个解验证过。证明它对于每一个有意义的解都成立将为围绕素数分布的许多奥秘带来光明。

在证明素数定理的过程中,黎曼提出了一个论断:Zeta函数的零点都在直线Res(s) = 1/2上。他在作了一番努力而未能证明后便放弃了,因为这对他证明素数定理影响不大。但这一问题至今仍然未能解决,甚至于比此假设简单的猜想也未能获证。而函数论和解析数论中的很多问题都依赖于黎曼假设。在代数数论中的广义黎曼假设更是影响深远。若能证明黎曼假设,则可带动许多问题的解决。

进展:Riemann 猜想究竟是一个什么样的猜想呢? 在回答这个问题之前我们先得介绍一个函数: Riemann ζ 函数。 这个函数虽然挂着 Riemann 的大名, 其实并不是 Riemann 首先提出的。 但 Riemann 虽然不是这一函数的提出者, 他的工作却大大加深了人们对这一函数的理解, 为其在数学与物理上的广泛应用奠定了基础。 后人为了纪念 Riemann 的卓越贡献, 就用他的名字命名了这一函数。

那么究竟什么是 Riemann ζ 函数呢? Riemann ζ 函数 ζ(s) 是级数表达式 (n 为正整数)

ζ(s) = ∑n n-s (Re(s) 1)

在复平面上的解析延拓。 之所以要对这一表达式进行解析延拓, 是因为 - 如我们已经注明的 - 这一表达式只适用于复平面上 s 的实部 Re(s) 1 的区域 (否则级数不收敛)。 Riemann 找到了这一表达式的解析延拓 (当然 Riemann 没有使用 “解析延拓” 这样的现代复变函数论术语)。 运用路径积分, 解析延拓后的 Riemann ζ 函数可以表示为:如右上角图

式中的积分实际是一个环绕正实轴 (即从 +∞ 出发, 沿实轴上方积分至原点附近, 环绕原点积分至实轴下方, 再沿实轴下方积分至 +∞ - 离实轴的距离及环绕原点的半径均趋于 0) 进行的围道积分; 式中的 Γ 函数 Γ(s) 是阶乘函数在复平面上的推广, 对于正整数 s1: Γ(s)=(s-1)!。 可以证明, 这一积分表达式除了在 s=1 处有一个简单极点外在整个复平面上解析。 这就是 Riemann ζ 函数的完整定义。

编辑本段黎曼猜想

运用右上角图中的积分表达式可以证明, Riemann ζ 函数满足以下代数关系式:

ζ(s) = 2Γ(1-s)(2π)s-1sin(πs/2)ζ(1-s)

从这个关系式中不难发现, Riemann ζ 函数在 s=-2n (n 为正整数) 取值为零 - 因为 sin(πs/2) 为零[注三]。 复平面上的这种使 Riemann ζ 函数取值为零的点被称为 Riemann ζ 函数的零点。 因此 s=-2n (n 为正整数) 是 Riemann ζ 函数的零点。 这些零点分布有序、 性质简单, 被称为 Riemann ζ 函数的平凡零点 (trivial zeros)。 除了这些平凡零点外, Riemann ζ 函数还有许多其它零点, 它们的性质远比那些平凡零点来得复杂, 被称为非平凡零点 (non-trivial zeros) 。 对 Riemann ζ 函数非平凡零点的研究构成了现代数学中最艰深的课题之一。Riemann 猜想就是一个关于这些非平凡零点的猜想。

Riemann 猜想: Riemann ζ 函数的所有非平凡零点都位于复平面上 Re(s)=1/2 的直线上。

这就是 Riemann 猜想的内容, 它是 Riemann 在 1859 年提出的。从其表述上看, Riemann 猜想似乎是一个纯粹的复变函数命题,但它其实却是一曲有关素数分布的神秘乐章。

编辑本段证明黎曼猜想的尝试

黎曼1859年在他的论文 Über die Anzahl der Primzahlen unter einer gegebenen Größe' 中提及了这个著名的猜想,但它并非该论文的中心目的,他也没有试图给出证明。黎曼知道ζ函数的不平凡零点对称地分布在直线s = ½ + it上,以及他知道它所有的不平凡零点一定位于区域0 ≤ Re(s) ≤ 1中。

1896年,雅克·阿达马和 Charles Jean de la Vallée-Poussin 分别独立地证明了在直线Re(s) = 1上没有零点。连同了黎曼对于不非凡零点已经证明了的其他特性,这显示了所有不平凡零点一定处于区域0 Re(s) 1上。这是素数定理第一个完整证明中很关键的一步。

1900年,大卫·希尔伯特将黎曼猜想包括在他著名的23条问题中,黎曼猜想与哥德巴赫猜想一起组成了希尔伯特名单上第8号问题。当被问及若他一觉醒来已是五百年后他将做什么时,希尔伯特有名地说过他的第一个问题将是黎曼猜想有否被证明。(Derbyshire 2003:197; Sabbagh 2003:69; Bollobas 1986:16). 黎曼猜想是希尔伯特问题中唯一一个被收入克雷数学研究所的千禧年大奖数学难题的。

1914年,高德菲·哈罗德·哈代证明了有无限个零点在直线Re(s) = ½上。然而仍然有可能有无限个不平凡零点位于其它地方(而且有可能是最主要的零点)。后来哈代与约翰·恩瑟·李特尔伍德在1921年及塞尔伯格在1942年的工作(临界线定理)也就是计算零点在临界线 Re(s) = ½ 上的平均密度。

近几十年的工作集中于清楚的计算大量零点的位置(希望借此能找到一个反例)以及对处于临界线以外零点数目的比例置一上界(希望能把上界降至零)

过去数十年很多数学家队伍声称证明了黎曼猜想,而截至2007年为止有少量的证明还没被验证。但它们都被数学社群所质疑,而专家们多数并不相信它们是正确的。艾希特大学的 Matthew R. Watkins 为这些或严肃或荒唐的声明编辑了一份列表,而一些其它声称的证明可在arXiv数据库中找到。

参考资料:

为什么说黎曼猜想的攻坚之路,就是一场全球银行的破产计划?

如何让全球银行破产,是全球经济大萧条,还是战争摧毁了文明?都不是,你只需要破解黎曼猜想。

黎曼猜想是什么

简单来说,黎曼猜想究竟讲了什么呢?就是一个寻找质数的方法。

什么是质数呢?我们应该在初中就学习过,就是指那些只能被1和自己所整除的数,如2、3、5、7、11等等。质数的研究属于数论的范畴。

早在古希腊时期,欧几里得的《几何原本》中就有对质数的研究。欧几里得采用反证法证明了质数有无穷个,但是质数究竟有什么分布规律呢?欧几里得并没有找到。

至此之后,数学家们都费劲心思想要找寻质数分布的规律,1859年,黎曼发表了《论小于已知数的质数个数》论文探究质数分布的奥秘,这篇只有短短八页的论文就是黎曼猜想的“诞生地”。

论文手稿

在这篇论文中,黎曼通过研究,发现质数出现的频率的规律,提出了黎曼Zeta函数,黎曼Zeta函数是一个无穷级数的求和。

Zeta函数

黎曼对解析延拓后的Zeta函数证明了其具有两类零点。其中一类是某个三角sin函数的周期零点,这被称为平凡零点;另一类是Zeta函数自身的零点,被称为非平凡零点。针对非平凡零点,黎曼提出了三个命题。

第一个命题,黎曼指出了非平凡零点的个数,且十分肯定其分布在实部大于0但是小于1的带状区域上。

第二个命题,黎曼提出所有非平凡零点都几乎全部位于实部等于1/2的直线上。

而第三个命题就是重头戏了:很可能所有非平凡零点都全部位于实部等于1/2的直线上。

这第一个命题,黎曼表示太简单了,压根不需要证明,然而直到86年之后,第一个命题才由德国数学家蒙戈尔特在给出了完整的证明。

而至于第二个命题,黎曼声称自己已经证明,但是证明过程还需要简化,然而因为饱受病痛折磨,黎曼39岁就英年早逝,去世之后,他的手稿被管家付之一炬,自此黎曼的证明过程就彻底消失人间。

1932年。一位德国数学家Siegel整理黎曼仅存的手稿,让黎曼当时演算零点所用的公式重见天日,这个公式被命名为Riemann-Siegel公式。

凭借这个公式,数学家将第二个命题,推进到“至少有40%的非平凡零点在临界线上”,然后就再也没有新的进展了。

而第三个命题就是黎曼猜想,这条线,从此被称为临界线。关于第三个命题,即使是黎曼自己也不敢确定。即使到现在,也依然没有人能够给出答案。若黎曼猜想证明为真,则该函数的所有非平凡零点,即两图像的交点均会出现在该直线上。

黎曼猜想的完整表述

有一个数学研究所叫克雷研究所,2000年的时候他们给七道数学未解之谜分别给出了100万美元的悬赏,其中一道题就是证明黎曼猜想。如今18年过去了,7道题只有1道解决,黎曼猜想还是没能攻克。

“黎曼猜想”后面是史诗级灾难

从19世纪以来,越来越多的数学理论成果开枝散叶,很多早期被认为无用之用的分支,今日早已经成为现代科技最强有力的工具,为现代科技的发展推波助澜。

牛顿的微积分成为第一次工业革命的火炬,线性代数、矩阵分析、统计学、群论等为我们带来了信息文明,非欧几何(特别是黎曼几何)和张量分析让陆海导航成为可能,二进制让人类进入计算机时代。

而质数则成为了互联网大门的钥匙,替人类看护所有放在网络上的隐私,私钥加密、签名.....

数学家们之所以将质数应用在密码学上,正是因为人类还没有发现素数的规律,以它作密钥进行加密的话,即使运用超算,也会因求解质数时间过长而失去破解的意义。

现在普遍使用于各大银行的是RSA公钥加密算法 ,基于一个十分简单的素数事实:将两个大质数相乘,但是想要对其乘积进行因式分解却极其困难。

因为两个大素数的乘积因式分解时,除了1和其本身(这两个不在分解范围内)外,只有这两个大素数,但是分解时不知道这两个大素数,只有从最小的素数2开始,逐步试除,直到这两个大素数中较小的一个

这也是为什么全球各大银行都利用质素作为自己安全密码体系。

一旦素数之秘被解开,无需量子计算机,根据其原理甚至能破解现代银行的安全密码体系,让银行进入破产。

不仅是银行,那么现在几乎所有互联网的加密方式将不再安全,互联网变成一个裸奔的世界解。

所以数学家将对黎曼猜想的攻坚之路趣称为:“各大行长躲在银行保险柜前瑟瑟发抖,不少黑客则潜伏敲着键盘蓄势待发”。

黎曼猜想带来的危险不仅仅影响银行,更不仅仅是互联网, 甚至可能动摇对数学界产生影响。

在这数百年里,无数的数学家都在黎曼猜想上耗费过心力,数学文献中已有超过一千条数学命题以黎曼猜想的成立为前提。

如果黎曼猜想被证明,所有那些数学命题就全都可以荣升为定理;反之,如果黎曼猜想被否证,则那些数学命题中起码有一部分将成为陪葬品,被扫进历史的尘堆。

那些建立在黎曼猜想上的推论,可以说正在惶恐地等待着最终的审判。无论结果如何,都势必会影响数学大厦。

一个数学猜想与为数如此众多的数学命题有着密切关联,这是世上极为罕有的,也许正是因为这样的关系,黎曼猜想的名气和光环变得更加显著,也越发让人着迷。

那放弃对黎曼猜想的破解吗

不过和灾难相比,破解黎曼猜想更像是在诺亚方舟之中重获新生,被誉为数学届无冕之王的希尔伯特曾经说过:每一道数学难题都是会下金蛋的鹅。

就像对费马大定理的证明一样,它扩展了“无穷递降法”和虚数的应用;催生出库默尔的“理想数论”;促成了莫德尔猜想、谷山--志村猜想得证;拓展了群论的应用;加深了椭圆方程的研究;找到了微分几何在数论上的生长点;发现了伊利瓦金—弗莱切方法与伊娃沙娃理论的结合点;推动了数学的整体发展和研究,……同时又催生出一批又一批重量级数学家。

怀尔斯破解费马大定理

如果人类真的能够破解黎曼猜想,那么新的数学方法、新的数学规律、新的数学工具将会应运而生,带来人类走向新的文明。

希尔伯特曾经说过:“对我们来说没有什么不可知,以我的看法,对于自然科学来说也没有什么不可知。抛弃这个愚蠢的不可知,让我们决心反其道而行之。我们必须知道,我们必将知道。”

人类之所以能够不断发展,正是源于我们在不断掀开自然界中蕴藏着的所有奥秘。

  • 评论列表:
  •  温人饮湿
     发布于 2022-07-08 07:15:42  回复该评论
  • 对于正整数 s1: Γ(s)=(s-1)!。 可以证明, 这一积分表达式除了在 s=1 处有一个简单极点外在整个复平面上解析。 这就是 Riemann ζ 函数
  •  嘻友简妗
     发布于 2022-07-08 11:18:35  回复该评论
  • 、新的数学规律、新的数学工具将会应运而生,带来人类走向新的文明。希尔伯特曾经说过:“对我们来说没有什么不可知,以我的看法,对于自然科学来说也没有什么不可知。抛弃这个愚蠢的不可知,让我们

发表评论:

Powered By

Copyright Your WebSite.Some Rights Reserved.